It All Comes Down to Dirt
Learning while Playing with the *Healthy Chickens, Healthy Pastures* Playkit
Linda Booth Sweeney

Not long ago, our local elementary school hosted a “Getting to Green” community event. My job was to work with my friend, Edie, an Audubon educator and farmer, to entertain the little ones while their parents listened to a variety of speakers talk about “sustainable” consumerism.

Edie, in her 80’s and more nimble than folks half her age, brought one of her chickens for the children to touch and hold. I brought a “Healthy Chickens, Healthy Pastures” Playkit.

“Clucky”, Edie’s barnyard bantam, was a huge success. The children, ranging in age from 3 to 9, sat cross-legged in a circle, listening intently as she explained why a chicken has this part and that, what they eat, what color eggs they lay. (Thoreaucaena, a breed Edie developed, lays greenish-blue eggs. Dr. Seuss would approve.)

Each child had a chance to feed and hold the chicken on their lap. To their great delight, they all received a white feather to stroke and tuck into their pockets to take home. When Edie finished, one of the monitors arrived to give the group a choice: “You can play basketball in the gym, or you can play a ‘systems game’ with Mrs. Sweeney.” No surprise. Most of the children bolted to the gym! (Note to self: Drop the word ‘systems’ next time.) The few who remained gathered into a small circle on the floor. I showed them pictures of a chicken coop at Drumlin Farm, a local Audubon site. We laid out playing cards with pictures of chickens, cows, grass, manure, insects, decomposing soil, eggs, people, the sun, and more, and gave everyone a handful of wikki stix, bend-able sticks made from hand-knitting yarn enhanced with non-toxic wax. We were ready to play.

When they looked closely at the mobile coop they could see that there was something different about this coop: It had wheels!

The *Healthy Chickens, Healthy Pastures* playkit and its companion curriculum guide have been created to help students think deliberately about living systems in a farm setting and to give students an organizing framework (informed by system dynamics) to take home and apply in other settings. Through the discussions, interactive system mapping activities, and games, students explore the hidden interconnections and dynamics within a sustainable chicken farm. Concepts such as feedback loops, time horizon, stocks/flows and waste=food are illustrated through a study of the relationships between elements of a farm pasture: chickens, cows, soil, plants, manure, etc. Students answer the question: “What’s the connection between the Egg Mobile and a healthy pasture?” The unit can include outdoor exploration if you have access to Drumlin Farm or another local farm that raises chickens, or you can bring the farm into your classroom using photos, videos and the Internet. This unit can be used to encourage students to see the people, land and wildlife in and around farms, not as a set of interesting but disconnected parts, but as components of vibrant, living systems. For more on The *Healthy Chickens, Healthy Pastures* playkit, and to download the free curriculum guide, see: www.clex-change.org.

<table>
<thead>
<tr>
<th>THIS ISSUE AT A GLANCE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>It All Comes Down to Dirt</td>
<td>1</td>
</tr>
<tr>
<td>Diana Fisher wins SDS Lifetime Achievement Award</td>
<td>2</td>
</tr>
<tr>
<td>Conference Scholarship Recipients Reports</td>
<td>6</td>
</tr>
</tbody>
</table>

Healthy Chickens continued on page 3
As the summer wends its way to a close, and school is starting in some places in the country, I am reflecting on two different conferences I attended in the month of July.

The first was Camp Snowball in Tucson. (We enjoyed the name, which was based on one of the names for a reinforcing loop as well as the impossibility of Snow in July in Tucson!) It was an exciting and inspiring event designed to kick off a national movement to incorporate systems thinking and system dynamics, education for sustainability, youth leadership, and organizational learning within our schools and the communities that support them. This follows four years of work by the SoL Education Partnership toward the same goals. You will certainly hear more about this in the future!

The second conference I attended was the International System Dynamics Conference in Washington, D.C. The highlight of that conference was the Lifetime Achievement Award given to Diana Fisher! What an honor for her and for K-12 education!

The CLE will sponsor a conference again next summer. We plan to hold it in the Boston area the last weekend in June. Mark your calendars. We will send more information very soon.

I wish a productive start to your school year and a delightful fall season.

Take care,
Lees
stuntzn@clexchange.org

Diana Fisher Receives SDS Lifetime Achievement Award

At a recent International meeting in Washington, D.C., the System Dynamics Society presented its Lifetime Achievement Award to Diana Fisher, a high school mathematics teacher from Portland, Oregon. It is only the second time, in the 35-year history of the society, that this award has been bestowed.

Ms. Fisher has worked over the last 20 years to bring system dynamics into high school mathematics (algebra, pre-calculus, and calculus), and has created a year-long system dynamics modeling course for students age 15 to 18 years, using the visual nature of system dynamics software, STELLA, to enhance students’ understanding of both mathematics and systems’ change over time. She has written two books based on her lessons, *Lessons in Mathematics: A Dynamic Approach*, and *Modeling Dynamic Systems: Lessons for a First Course (3rd edition)*, both published by isee systems, inc.

During her distinguished teaching career, Ms. Fisher has been awarded two National Science Foundation grants, used to train math, science, and social science teachers to create small simulation models and accompanying curriculum. These grants have enabled hundreds of teachers to learn to use system dynamics simulations in the classroom. Ms. Fisher is also the recipient of the Presidential Award for Excellence in Mathematics Teaching, the Intel Award for Innovation in Teaching, and the Barry Richmond Scholarship awarded by Pegasus Communications.

In her classes over the past twenty years, Ms. Fisher has helped students, through the use of system dynamics modeling, study dynamic connections such as those involved in how drugs work in the human body, natural resource depletion, predator/prey interactions, the spread of epidemics, the issues of urban dynamics (employment), supply/demand/price interactions, and the increase in pollution in rivers. These subjects provide powerful story lines for model-building. Videos of her students’ projects are available on her website (www.ccmodelingsystems.com). Other resources that show the breadth and power of the use of systems thinking and system dynamics in K-12 education are available on the Creative Learning Exchange (www.clexchange.org) and the Waters Foundation (www.watersfoundation.org) websites.

Ms. Fisher is currently a Ph.D. student in the Systems Science Department at Portland State University. Her formal training in System Dynamics was obtained through Worcester Polytechnic Institute where she received a graduate certificate in System Dynamics. The paper from her plenary Lifetime Achievement presentation will be published in the *System Dynamics Review*, the professional journal of the System Dynamics Society.
Healthy Chickens

continued from page 1

“Now, why would that be?” we wondered. Lilly, a bright and curious first-grader, had been to Drumlin Farm. She'd seen the chickens scratching the grass near the mobile chicken coop. “I know, I know!” she said. “The chickens eat the bugs in the grass!” Lilly grabbed a green wikki stix and connected chicken card to the grass card.

I asked more questions: What happens to the chicken manure when it is left in the field? How are the chickens, the pasture and people connected?

Then the group set to work, adding and taking away links. When they were done, they had “connected the dots” and had put together a tightly linked “map” of causes and effects. They discovered that the more the soil was fed the chicken manure and decaying plants, the healthier it was. With a little help, they also saw the positive influence the chickens had on the health of cows (eating the harmful insect larvae in the cow's manure), people (an omnivore's diet improved the quality of the chicken's eggs) and the climate (less fossil fuel needed to produce chicken feed).

When the last wikki stix was pressed into place, Lilly paused to study the map. Then she exclaimed: “It all comes down to dirt!”

If you read the newspapers, you know that this statement is both timely and profound. Loss of topsoil and soil erosion due to over-farming and over-grazing of fragile soils is, according to The Worldwatch Institute, “a quiet crisis in the world economy.” The causes of soil erosion (expanding demand for food, shortcut farming practices) and consequences (silt-laden rivers, desertification) are complex. Said simply though, the more the soil erodes, the less productive it is. Without good topsoil, plants cannot grow.

So, Lilly, at the tender of seven, got it. She explored the interconnections and dynamics of the farm and found that all roads (all wikki stix in this case) lead to the soil. In just a short half hour, she discovered the role soil plays in the health of crops, animals and people. With more time, she would have also likely discovered soil's role in the cleanliness of water and the livelihoods of farmers. She might also have been guided to think about

For very young students (Pre-K—K), have the children, as a group, use stamps in the form of a barn, cow, chicken, tractor, etc., to create, on a large piece of butcher paper, the main components of the healthy pasture system (Egg Mobile, chickens, eggs, bugs, cows, grasses, soil, manure, people, etc.). The teacher can draw a simple picture of the Egg Mobile and add stamps of a chicken (drawing in dirt at its feet) and the cow (with a bit of manure). Encourage students to look for connections between the elements of the drawing and to draw lines, or tape on yarn, between elements in the picture that are connected in some way. Use guiding questions to ask children to explain those connections:

What about the soil/dirt around the Egg Mobile? What's in it?
How does the Egg Mobile help other animals on the farm?
How are people a part of our picture?
Was the sun out today? Was it rainy? What does the weather “do” for the chickens and pasture?

For more activity ideas, see the Making Connections curriculum guide: www.clexchange.org.

For very young students (Pre-K—K), have the children, as a group, use stamps in the form of a barn, cow, chicken, tractor, etc., to create, on a large piece of butcher paper, the main components of the healthy pasture system (Egg Mobile, chickens, eggs, bugs, cows, grasses, soil, manure, people, etc.). The teacher can draw a simple picture of the Egg Mobile and add stamps of a chicken (drawing in dirt at its feet) and the cow (with a bit of manure). Encourage students to look for connections between the elements of the drawing and to draw lines, or tape on yarn, between elements in the picture that are connected in some way. Use guiding questions to ask children to explain those connections:

What about the soil/dirt around the Egg Mobile? What's in it?
How does the Egg Mobile help other animals on the farm?
How are people a part of our picture?
Was the sun out today? Was it rainy? What does the weather “do” for the chickens and pasture?

For more activity ideas, see the Making Connections curriculum guide: www.clexchange.org.
Healthy Chickens

continued from page 3

“systems” as an organizing framework to take home and apply, for instance, to that escalating squabble with her brother or to preventing homework “burn-out.”

For grades 1-5: As children lay out the playing cards, they begin to describe connections. For instance, when asked what influences soil health, students will say that the chicken manure helps make the soil healthy. As they continue to make connections, Feedback Loops (closed loops of causality) will emerge in the links between cards. If asked, what other connections go into and out of the soil that make soil healthy, they will likely point to the decaying plants. When they “connect the dots” they discover that there is positive feedback at work between grass, decaying plants/animal manure and healthy soil.
For older students: The above Stock-Flow diagram (from the Healthy Chickens, Healthy Pastures curriculum guide) can be created with older students to explore the impact of humans on the farm system. This stock-flow diagram shows how people may be positively connected to animal and pasture health: People always want healthy livestock like chickens and cows, so connecting arrows go from each stock to people. To produce healthy chickens and cows, people must practice prudent environmental stewardship, so connecting arrows travel from people to increasing chickens’ health and increasing cows’ health. (Diagram created by Alan Ticotsky.)

Systems Playkits, like the one I used with Lilly and her friends, have been used on farms, in public workshops, with a local girl scout troop (helping them earn their eco-explorer badge), and most recently with a group of 50 graduate students, studying sustainable development and education in Brazil.

People, whether they’re eight or eighty-eight, like to touch, build, discover, explore, imagine and play. Using all their senses and interacting with the real world increases the depth and breadth of learning. As our children begin to understand the critical issues that shape our interdependent world, let them become true “systems citizens” with their hands in the dirt and a chicken feather in their pocket. I think Confucius had it right when he said:

When I hear, I forget,
When I see, I remember,
When I do, I understand.

Acknowledgements: Many thanks to Renata Pomponi (Drumlin Farm), Lees Stuntz (CLE) and Ann Jennings (graphic designer), for our most enjoyable and fruitful collaboration on the Healthy Chickens, Healthy Pastures playkit; and to Gale Prior and Sara Schley for their helpful comments on this article.

Linda Booth Sweeney, Ed.D., is an educator, researcher, and award-winning writer. She lectures widely, working with people of all ages to bring a deeper understanding of living systems into everyday decisions, learning, and design. Her particular passion is helping young people discover their own natural systems intelligence through books and articles, web site content, experiential games and playkits, museum signage, computer simulations, curriculum, puppet shows and school visits. She lives outside of Boston with her family and growing brood of chickens.

The Healthy Chickens, Healthy Pastures playkit is available for purchase from the CLE. www.clexchange.org
Scholarship Recipients at the 2010 ST/DM Conference

Last June, we gathered at the Babson Conference Center for the 2010 ST/DM conference. For many, it was the first experience at one of our conferences. Two scholarships supported attendance for many of these first-timers. One was the Tracing Connections Scholarship, from isee systems, honoring Barry Richmond and the book Tracing Connections, created in his memory. The other was a scholarship from the System Dynamics Society. Scholarship recipients were asked to reflect on their experiences with system dynamics in K-12 education, following the 2010-2011 school year, and send us a written report on how they used ST/SD during the year, describing what they did, how it worked, what they want to do next, and how they would improve what they have done. The reports are inspiring and fun to read. We offer a few herein, to stimulate discussion and learning. More reports will be shared in subsequent issues.

Tracing Connections and System Dynamics Scholarship Reflections

Barbara Casanova

I was truly honored to be selected as a recipient of a Tracing Connections and System Dynamics Scholarship for the Systems Thinking and Dynamic Modeling Conference at the Babson Executive Conference Center in Wellesley, Massachusetts last summer. The conference was incredible and helped me make another shift in my thinking and understanding about Systems Thinking and Dynamic Modeling in K–2 Education.

Andrew Jones’ Keynote, entitled How Your Students Can Use System Dynamics to Save the World (Jones, 2010), confirmed what my colleagues and I have been observing with primary age children in terms of developing understanding of System Dynamics through physical interaction. When you “live the system, you experience the system as part of it.” (Jones, 2010) Jones spoke of his “Carry Your Garbage” experiment in college. Participants put the things they would normally throw away in the garbage, in a bag and carried the garbage around with them. By the fifth day, participants had a bag full of garbage. The physical interaction with their bags of garbage forced them to look at the way they used things. It forced them to look at the long-term consequences. It created a feedback loop which brought about the need for action to change. Jones said that the “first objective for a curriculum of Systems Thinking for children should include experiences that help children see the world as an interdependent whole.” As educators, we can provide these experiences and give the children “the tools to change the world.” (Jones, 2010)

The session How Does a System Dynamicist Think? with Dennis Meadows (Meadows, 2010), added to my understanding of dynamic modeling. Dennis outlined the process of creating a model that makes problems visible. He talked about having a shared experience as a reference point for the group. The shared experience provides common background information when discussing mental models. It also helps with the development of shared vocabulary when identifying specific behaviors, goal setting and problem solving. The examples Meadows presented helped me understand how to use the tools to “design changes to meet a goal and to bring changes to real life.” (Meadows, 2010)

These two sessions inspired me to want to develop a lesson that would actively involve the children in taking control of their own actions to create a positive change in some aspect of their lives. I wanted something that would incorporate a shared experience, as well as have a positive impact on the world. I wanted to incorporate the Habits of a Systems Thinker to see if knowledge could be the leverage needed to create a positive change. That’s when the idea came to me. In my classroom, we had been investigating the Desert Environment and discussing ways to help take care of the earth. I could incorporate the children’s desire to help care for the earth with a simple act they do every day. The lesson is called “The Drinking Fountain.” (Casanova, 2010)

The Drinking Fountain lesson grew out of a daily observation I made as my Kindergarten children got drinks of water after lunch recess. I noticed a lot of water being wasted as they stood in line day after day and took their turns to get drinks. Water is such a precious resource, especially here in the Tucson desert. We needed to do something to solve this problem. I could have just told them that they were wasting water, but I believe it would have had little impact on addressing the problem. I thought about my latest experiences with Systems Thinking and Dynamic Modeling at the CLE Conference 2010, and decided that this would be a perfect opportunity to develop a model for reducing the amount of water children waste when getting drinks.

I decided to solicit the help of a second/third grade class. Many of the students were my former students and are very familiar with Systems Thinking (ST), ST tools, ST Habits and data collection. I spoke to the second/third grade students and their teacher and explained what was happening at the

Creative Learning Exchange • Summer 2011
drinking fountain. I asked them to help collect data for one week. Each volunteer counter would count one – one thousand, two – one thousand, etc. for every second of water being wasted and not drunk. The data would be recorded on a Behavior-Over-Time Graph (BOTG). The BOTG would be used to show the Kindergarten children the amount of water they were wasting each day.

The results were astounding. Data collected for the whole class, for a time period of six days, ranged from a low of 15 seconds of water wasted to a high of 91 seconds of water wasted in one day. The average for the trial period was 47.66 seconds per day. The majority of the Kindergarten children did not even realize that they were wasting water. I decided to do a role play of getting a drink of water to help the children identify some of the common behaviors that were affecting the waste of water. I recorded their observations on a Stock/Flow Diagram. Some of their observations included: looking at the other kids instead of drinking right away, someone else pushes the water button, talking instead of drinking, splashing the water, pushing the water button too many times, pushing the water button too long, and playing with the water.

With this new knowledge, we set off to collect data to see if we could decrease our water wasting when getting drinks. The children’s awareness levels increased dramatically. They were very focused at the drinking fountain. They did not let their neighbor push the button. They looked at the water more closely and were ready to catch the water in their mouths when it came out. Data collected for the whole class reflected their ability to take control of their actions and make a decrease in the amount of water being wasted. The range went from a low of 8 seconds of water wasted to a high of 25 seconds of water wasted in one day. The average for the trial period was 19.8 seconds of water wasted per day. That was a decrease of almost 28 seconds of water per day, an improvement of over 50%. The children truly felt empowered. They created a positive change that would help the world! Isn’t it wonderful how a simple observation can grow into something so great?

After sharing the Drinking Fountain (Casanova, 2010) success story with my Systems Thinking study group, we decided to design a Recycling Project for Earth Day. The Recycling Project focuses on reducing the amount of garbage going to the landfill by recycling milk cartons and drink containers in our school cafeteria. The results will be presented at Camp Snowball in Tucson, Arizona July 21 – 25, 2011. Hope to see you there!

REFERENCES

Zerrin Doğanca

Last year, I attended “Systems Thinking and Dynamic Modeling Conference” as a presenter. It was the first time that I had attended a conference in USA and I was one of the few participants who are out of USA. I presented my study on comparison of two classes on the same subject in the presence and absence of causal loop diagrams. The instructional activity was taken from Waters Foundation Website; “Be Nice to Spiders” (http://www.watersfoundation.org/images/media/Be%20Nice%20to%20Spiders%20PDF.pdf). The activity was modified for the purpose of the research and translated into Turkish.

Firstly, I want to mention about the atmosphere when I presented my paper. Although, there were two great presentations at the same time of my presentation, I had a very concerned audience. I had attended several conferences in Turkey and in Europe. And, generally 10 or 15 minutes are devoted for each presentation and speakers are always in a rush to express themselves in such a short time. I had about half an hour to explain my study in detail, to show my instructional activities designed for the experimental and control groups. After my presentation, there were some questions about the instruction in the research. And, the most important part is that we examined the causal loop diagrams all together and tried to make them as simple as possible for the 5th grade students. It was a funny and instructive practice. In the conferences, I generally get very nervous, but this was the first time I felt so comfortable, and I really enjoyed the moments, even in the questioning part!
Scholarship Recipients

continued from page 7

Another important gain of this conference for me is that I met several teachers and listened to their works on using System Dynamic tools in their classes. These studies motivated me to go further on integrating system dynamics tools in science classes and made me believe that these applications are possible in real school environment.

I was able to collect several exemplary lesson plans and ideas for classroom applications and bought some very good books to study for my PhD dissertation. (The book The Shape of Change, Including the Shape of Change Stocks and Flows is my favourite.) Throughout this year, I modified the seventh grade science unit “Human and the Environment” by using system elements: feedback loops, stock and flow diagrams, and dynamic modeling. The unit includes several dynamic issues: population dynamics, food chains and webs in an ecosystem, environmental problems and effects of these problems to our planet. Moreover, I worked on designing two instruments for assessing system thinking skills and views of students about some dynamic ecological problems. In Spring 2011, these instruments and the instructions based on systems approach were applied to two seventh grade classes in a public school in Istanbul. The preliminary results and experiences from this pilot study will be presented in PhD Colloquium in the 29th International Conference in Washington D.C. in July 2011. Based on the feedback that I will get in the PhD Colloquium, the experimental study, including a control group that will be taught as the standard science curriculum suggests, will take place in Spring 2012.

Michael Hanson

The experience at the 2010 Babson Systems Conference has influenced my approach to using systems thinking in the classroom. I came to the conference with a team from the Tahoma School District. We have been working for 2 years to incorporate more systems thinking into our district. We have attended multiple conferences and trainings. The Babson conference, by far, was the single most useful professional development to help us incorporate ST/SD into our classrooms.

I enjoyed learning from the professionals at the conference. The most useful presenters, for me, were the classroom teachers and those who have experience at using systems thinking with young learners.

From the conference we developed a set of learning targets (largely stolen from the Tucson folks) that gave us direction. We then began developing a series of steps for how to incorporate systems thinking into the classroom. This has been refined over the year and now closely resembles the steps found both in a document created by Linda Booth Sweeney, and one presented by Nalani Linder and Colleen Ponto:

1. Tell the story
2. Name the variables
3. Determine the system boundaries
4. Sketch the trends
 • behavior-over-time graphs
5. Make the system visible
 • connection circles
 • causal loop diagrams
 • stock / flow diagrams
6. Look for leverage for sustainability
 • iceberg model

We have also created documents using connections circles to begin a story.

Much of my work with students this year has centered around our creation of ecocolumns. The students created websites to follow the changes in several factors over the course of the year. At one point I had them create a model on STELLA for the nitrogen cycle within their ecocolumn. This was not very successful for me. I believe that the potential is there to use this in the future but I lacked a clear vision for what I wanted them to get out of the model. I plan on continuing with the STELLA model again next year and refining my thinking about how this will help them understand their ecocolumn.

I also plan to increase the use of the systems thinking steps above throughout the year on various environmental issues.

We used the above steps over the course of about three hours to analyze issues that are caused by America’s addiction to oil. Students were given the freedom to identify a particular problem stemming from oil addiction. The level of ownership and the depth of understanding were evident. Student conversations are at a level that is not normal in a nonsystems-based lesson.

We intend to expand our use of systems thinking into several areas of our science curriculum. Currently it is used in our AP Environmental Science program and a little bit in our chemistry program. We have plans to incorporate lessons into our 10th grade biology program. We feel that we have developed enough basic knowledge that we can begin to expand the use of systems thinking. We are very interested in continuing our relationship.
When I attended the 2010 ST/DM conference last summer, I was in a period of transition professionally and personally. After seven years of leading the Sustainability Studies Department at The White Mountain School, I was stepping out of schools and teaching for a year to recalibrate and consider what would come next. I was fairly certain that my next steps would involve sustainability education and systems thinking and dynamics in some way, but I was not sure what form that would take.

As I write this report, that next step is just ahead of me. Starting in the fall, I will be directing the Center for Sustainability at Hathaway Brown School, an independent school in Shaker Heights, OH. As part of my work there, I will be developing an educational program that introduces students to the principles and practices of sustainability and provides opportunities for them to dive headlong into this field if they are interested. Systems thinking and dynamics will be integral to my work there. The resources I collected and the connections I made at the 2010 conference will serve me well as I embark on this new position.

That said, my experience at the 2010 conference also influenced my thinking and professional growth over the past year. I had the opportunity at the conference to speak with systems thinkers and modelers working at all levels within the educational system and people working outside of education. This was incredibly helpful as I considered what my next professional step would be. At that time, I was considering returning to school for additional training in systems modeling, working as a consultant to K-12 schools, but outside the classroom, and returning to the classroom. In the weeks and months that followed the conference, as I explored different possibilities, I drew on the conversations I had while at the conference. Ultimately, I decided to dive back into hands-on K-12 education, and do so with a commitment and passion for ST/DM.

Shortly after the conference, I also attended a Sustainability Institute for high school educators in the Boston area. I was there as a support resource for a cohort of Boston area school teachers who are developing a pilot sustainability education curriculum for integration into the Boston Public Schools. At the workshop, I often found myself helping teachers think about how to integrate systems thinking into their lessons. In particular, I drew on Diana Fisher’s work as I helped math teachers find their role in sustainability education. Learning from Diana about her approach to math education has had a tremendous influence on my own thinking about math education, and I have this conference and the previous SD conference in Albuquerque to thank for helping me to make that connection.

Finally, I have embarked on additional professional development in the past year, enrolling in an 8-month certificate course in biomimicry. As I have pursued my biomimicry studies, I have focused my inquiry on the intersection of biomimicry and system dynamics, both with an eye to educating and to changing the way we design systems. In my studies I have asked questions such as:

- How does nature construct resilient systems? How are the elements that make them resilient?
- What does it mean to optimize rather than maximize in system design? How might this be important as we design systems?
- What does a biomimetic economic system look like? Could we model this?
- Where are the points of overlap between biomimicry, systems thinking and dynamic modeling, and sustainability?

While I do not have much to report about what I have actually implemented and tried in the past year and how I think I could improve it, I will enter my new position in the fall with an incredible toolkit and set of connections and resources to draw on that my time away from the classroom has given the chance to develop. I look forward to sharing my work with you in the future as I work with teachers at Hathaway Brown to integrate systems thinking into their classes and bring new programs to the school. Some of the work I hope to do at HB in the coming 1-3 years includes:

Working with teachers at all grade levels to integrate systems thinking into their classrooms (HB is a preK-12 school). This will be new for me, as I have up to this point worked primarily on high school curriculum. I will certainly draw on the good work of the folks at the Waters Foundation for this.

Introducing math teachers at HB to systems thinking and modeling, and perhaps teaching a systems modeling class as an advanced math/sustainability elective.

Running a multi-school climate policy simulation using the Climate Interactive carbon simulator.

Scholarship Recipients continued on page 10
Bringing together biomimicry and systems thinking/dynamics in diverse ways for students and for others in the Cleveland area.

Many thanks to all those who helped make it possible for me to attend the 2010 conference. It was an incredibly valuable experience for me. I hope to be there again in 2012, with new ideas and experiences to share.

Donna Rishor

I have decided to analyze the artifact of a modified Systems Thinking problem-solving activity called Warped Juggle (Booth Sweeney, Meadows, 2008), through the lens of constructivism that I used in my classroom this year. In this team activity, students stood in a large circle. They were given instructions that they were to pass the ball so that everyone in the circle touched the ball in sequence and that they would be timed to see how quickly they could do it. To facilitate efficiency, students were asked to keep one hand up until they had received the ball, at which point they were to put their hand down. They were told that they could pass the ball to anyone who had not yet received it.

At that point, a ball was tossed to one of the participants in the circle and the activity began, amid much confusion and chaos. Once everyone had gotten the ball, I asked them if they wanted to practice it again, now that they had an idea of what to do, before being timed. Of course they agreed and the game began again, much the same way as the first time, but with a little more focus and direction. For the third trial, the group was timed as they performed the task. The timing factor promoted more focus but students remained standing in the same configuration, usually tossing the ball across the circle to a team mate. Time was 27 seconds. Next I asked them if they thought they could perform the task with two balls being passed around the group. At that point the activity became interesting because the balls were intersecting each other’s paths and it got a little more difficult for the students to keep up. The time increased by a few seconds and that proved to be the catalyst that students needed to assimilate new learning, (Posner, et al., 1982). Student leaders emerged and ideas began flying. Students who normally do not talk to one another engaged in lively discussion about the best way to solve the problem. More timid students approached me in an attempt to use the teacher as the means to deliver their ideas to their classmates but were redirected to the group when I reminded them that I was just the timer of the activity. Slowly the group became united in their pursuit of a common goal.

Finally students decided that they were ready to be timed again. This time, though, it appeared that they had completely thrown out their prior ideas as they lined themselves up sequentially into the ball toss pattern they had created and tightened up the circle significantly. Everyone worked together as they passed the ball to the person next to them around the circle and the completion time decreased. They suggested doing it again because they thought they could do it faster. Student leaders again emerged and encouraged the group to tighten up and bring the circle closer together. Of course the time decreased but students were still not satisfied and began their animated discourse once again. For the next timing they were, once again, standing close together in a circle but decided that the two most physically agile among them were going to run around the inside of the circle while everyone held their hands out and touched the ball to their hands. The time was three seconds for a class of 30 to touch each of two balls. The class was satisfied and triumphant. High-fives occurred between the group members and, if only for a while, students put aside their differences and came together to solve a problem.

The theory of constructivist learning assumes that learning occurs as individuals interact with one another and their environment. Children seek to make sense of their world and this sense-making becomes more sophisticated as it builds upon prior successes and failures, (Bransford 2000). As they mature, children have more knowledge, and that knowledge becomes progressively more sophisticated to aid them in future problem solving endeavors. Many of the systems thinking activities in the Playbook lend themselves nicely to problem solvers of all ages.

I had facilitated this activity with adults at a Professional Development meeting in the past and they were more adept at seeing what needed to be done in order to meet the objectives of the task. Children, however, approach problems in a different way because their age classifies them as more novice problem solvers and, therefore, less likely to recognize meaningful patterns of information that could help them (Bransford, 2000). The children needed to go through the entire problem-solving process in order to complete the task. The adults, on the other hand, began at a higher level, by passing the balls around the circle to the person next to them on the first attempt. From there, however, the actions of the adults and the children were nearly identical in nature and sequence.
Students were not provided explicit instruction on how to complete the activity. Instead they had to construct their own meaning from the situation and develop an effective strategy for meeting the goal. The activity would not have been possible if I had given the students the exact instructions for performing the task. They would have simply stood in a circle and held their hand out while someone ran around them with the balls. By being placed into a situation where a clear goal was set but no other direction provided, students were able to learn from the other students and their own errors in incremental steps leading toward an effective solution to the problem. They were actively engaged with the challenge and worked happily and excitedly to come up with a solution. Far from finding the lesson boring or dry, students completed the lesson feeling successful and smart, knowing that they had worked together as a team to construct knowledge. This systems thinking activity helped students to form a bond and to truly see that the class exists as a system in which working together is crucial for success.

By using the learning theory of constructivism, teachers can help students develop their novice skills and processes into the level used by experts, thereby helping them achieve that status. Students need practice in constructing their own knowledge and making sense of the systems around them if they are to be successful when solving problems in their academic coursework or situations in life.

Dan Goldner

I wish I could write to you with a dramatic story of how System Dynamics is flourishing at my school. The truth is I gave little attention to it this year. I would like to explain a little about why, and then to outline my thoughts for next year.

This year I am in my first year teaching high school mathematics in Dorchester. I planned to teach Algebra 2 and AP Calculus this year; when I arrived in the fall I learned I would also be teaching Geometry. Thus, each night I was responsible for preparing three different lessons, all for the first time.

Last summer, after the CLE conference, I was fortunate to discover a curriculum resource that provided time-tested day-by-day curricula for all three courses based on a learner-centered model, and these materials became my lifeline. I had just enough time each night to review the lesson for the next day, decide how to introduce and frame it for the students, and do my grading. I found I was hesitant to drop a chapter of my curriculum to make time for an isolated project (of any kind, including SD) because I was not yet familiar with what progress students would make through the required curriculum, nor what kinds of dependencies would show up among chapters. The bottom line is I had little of my own time to devise an SD offering and felt I could risk little course time to try it.

However, I did learn enough to begin to see how and where SD could fit in next year. My AP Calculus students finished the year still not having a good intuitive grasp of the relationship between derivatives and integrals, and I am thinking about starting the year introducing stocks and flows and doing some simple SD modeling to make those concepts into the central vocabulary for the course. In Algebra 2, I now understand the curriculum enough to see how and where I might use some of Diana Fisher’s material to add to what I’m already doing.

Neither of these ideas get at the central aims of SD education which, to me, are (1) helping students perceive and think about feedback and (2) use iterative modeling as a way to develop understanding of, well, anything. Instead, both these ideas are in the category of using SD tools and vocabulary to do an incrementally better job of what I am already doing.

Another possibility I’ve considered is inspired by Diana’s work and by the student-run work being done in Toronto. I am considering devoting a significant amount of time in the Algebra 2 course to helping students develop models of anything they are interested in, perhaps emphasizing the possibility of students using modeling to understand materials from other classes (for my students, primarily chemistry, literature, or history). I’m frankly not sure I can pull this off—I have enough freedom at school to try it, but it could turn out to be a very ambitious instructional task. I do not see doing this with AP Calculus until

REFERENCES:
Scholarship Recipients

continued from page 11

the last four weeks of school, as the College Board syllabus is demanding and leaves little time for applications and explorations of the basic material. Even in Algebra 2, where I have more flexibility, it will be a challenge. Diana has certain exercises she does in Algebra, but her modeling courses are separate electives.

I should know more by the end of summer what I plan to attempt next year, and then, of course, the actual school year will reveal what I actually am able to implement. I have four main considerations for next year:

1. I want a learner-centered classroom with high student interest and engagement.
2. I believe iterated modeling is how humans understand the world.
3. I believe recognizing and considering feedback is extremely important.
4. I have a responsibility to help students understand some mandated content.

The first three are consistent with a focus on SD, and the fourth can be if I can develop the pedagogy to help students connect the required mathematical skills and concepts to the modeling work. This is certainly possible but not easy to get right. Also this summer, I am exploring learner-centered approaches that come out of the traditions of pure mathematics rather than modeling, and which, when done well, have achieved levels of student engagement and personal and academic growth similar to those described in the SD success stories. I will sort all this out and determine what the best tack to take will be for my second year of teaching.

I am really grateful to the SDS and the CLE for your support and encouragement. Integrating all this is harder than I thought it would be, but I’m just getting started.